The wave variables, a solution for stable haptic feedback in molecular docking simulations

نویسندگان

  • B. Daunay
  • A. Abbaci
  • A. Micaelli
  • S. Regnier
چکیده

This paper presents a new method for a six degrees of freedom haptic feedback in molecular docking simulations in virtual reality. The proposed method allows haptic interaction even in the case of classical molecular simulation which implies notoriously long computation time. These simulations are based on the Newtonian mechanics theory and imply an energetic interaction description between atoms. To use wave variables with delayed simulations appears as a solution to provide stable and robust teleoperation. This method can then be used with any energetic force field using a minimization process, thus avoiding the fastidious optimization of molecular simulation programs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable six degrees of freedom haptic feedback for flexible ligand-protein docking

This paper presents a new method for haptic feedback in molecular docking simulations as applied to the design of new drugs. These simulations, typically used by the pharmaceutical industry, for example Sanofi-Aventis, are based on the description of atomic energies to estimate the interactions between a ligand and a protein. The main drawback is that forces and torques cannot be calculated usi...

متن کامل

Adaptive GPU-accelerated force calculation for interactive rigid molecular docking using haptics.

Molecular docking systems model and simulate in silico the interactions of intermolecular binding. Haptics-assisted docking enables the user to interact with the simulation via their sense of touch but a stringent time constraint on the computation of forces is imposed due to the sensitivity of the human haptic system. To simulate high fidelity smooth and stable feedback the haptic feedback loo...

متن کامل

Three new scorpion chloride channel toxins as potential anti-cancer drugs: Computational prediction of the interactions with hMMP-2 by docking and Steered Molecular Dynamics Simulations

Scorpion venom is a rich source of toxins which have great potential to develop new therapeutic agents. Scorpion chloride channel toxins (ClTxs), such as Chlorotoxin selectively inhibit human Matrix Methaloproteinase-2 (hMMP-2). The inhibitors of hMMP-2 have potential use in cancer therapy. Three new ClTxs, meuCl14, meuCl15 and meuCl16, derived from the venom transcriptome of Iranian scorpion, ...

متن کامل

A real-time proximity querying algorithm for haptic-based molecular docking.

Intermolecular binding underlies every metabolic and regulatory processes of the cell, and the therapeutic and pharmacological properties of drugs. Molecular docking systems model and simulate these interactions in silico and allow us to study the binding process. Haptic-based docking provides an immersive virtual docking environment where the user can interact with and guide the molecules to t...

متن کامل

Three new scorpion chloride channel toxins as potential anti-cancer drugs: Computational prediction of the interactions with hMMP-2 by docking and Steered Molecular Dynamics Simulations

Scorpion venom is a rich source of toxins which have great potential to develop new therapeutic agents. Scorpion chloride channel toxins (ClTxs), such as Chlorotoxin selectively inhibit human Matrix Methaloproteinase-2 (hMMP-2). The inhibitors of hMMP-2 have potential use in cancer therapy. Three new ClTxs, meuCl14, meuCl15 and meuCl16, derived from the venom transcriptome of Iranian scorpion, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007